IR-Spektroskopische Untersuchungen an 1,3-Dioxaund 1,3-Diaza-2-boracyclopentanderivaten

Von

A. Meller und H. Marecek

Aus dem Institut für Anorganische Chemie der Technischen Hochschule Wien

Mit 3 Abbildungen

(Eingegangen am 18. Juli 1967)

Die IR-Spektren von mehreren Dioxa- und Diazaboracyclopentanderivaten wurden zusammen mit jenen von C-deuterierten Verbindungen untersucht. Besonderer Wert wurde auf die Klärung von Kopplungen zwischen ν BN-, ν BO- und δ CH₃-Schwingungen im Bereich zwischen 1550 bis 1300 cm⁻¹ gelegt.

IR-spectra of several dioxa- and diaza-boracyclopentanes have been studied together with those of some Cdeuterated analogues. Special attention has been given to coupling effects of ν BN-, ν BO-, and δ CH₃-modes in the 1550—1300 cm⁻¹ region.

Nach dem unlängst über N- und O-methylsubstituierte Borazin- und Boroxinderivate berichtet wurde¹⁻⁴, deren Spektren im Bereich zwischen 1600 und 1300 cm⁻¹ starke Kopplungserscheinungen zeigen, war zu erwarten, daß ähnliche Kopplungen auch in 1,3-Dioxa- und 1,3-Diaza-2boracyclopentanderivaten auftreten. Von besonderem Interesse schien dabei die Lage von BN- und BO-Valenzschwingungen in den entsprechenden Alkoxyaminoboranen in denen am Bor die Gruppierungen

¹ A. Meller und E. Schaschel, Mh. Chem. 98, 390 (1967).

² A. Meller und M. Wechsberg, Mh. Chem. 98, 513 (1967).

³ A. Meller und E. Schaschel, Mh. Chem. 98, 1358 (1967).

⁴ A. Meller, Mh. Chem. 98, 2014 (1967).

vorliegen.

Über IR-Spektren von Verbindungen des Typs A ist in der Literatur bereits von *Lappert* und Mitarbeitern⁵⁻⁷ berichtet worden, während vom Typ **B** lediglich ein Derivat bekannt ist, wobei jedoch nur die NH-Valenzschwingung angegeben wurde⁸.

Für eine 10atomige Verbindung vom Typ

$$H_2C--O$$

B-X müssen 24 Grundschwingungen auftreten
 H_2C-O

Obwohl hier keine Ramanspektren vorliegen, kann man wohl in Analogie zu ähnlichen B-N-Verbindungen eine angenäherte C2v-Symmetrie annehmen. Die 24 Grundschwingungen verteilen sich demnach auf 4 Schwingungsklassen (A₁, A₂, B₁, B₂), wobei 12 Schwingungen innere Schwingungen der CH2-Gruppen sind und 12 Skelettschwingungen auftreten. Dabei sind die Schwingungen der Klasse A2 nicht IR-aktiv und die nicht-ebenen Deformationen der Klasse B2 liegen sicher außerhalb des aufgenommenen Bereiches (d. h. unter 625 cm⁻¹). Die Mehrzahl der Schwingungen im beobachteten Bereich gehört zu den Schwingungsklassen A₁ und B₁, so daß starke Kopplungen zu erwarten sind. Noch vielfältiger wird das Bild, wenn X ein komplexer Substituent — etwa — OR. IR-Spektren mit starken Kopplungen führt. Eine Totalzuordnung ist dabei ohne Aufnahme von Ramanspektren nicht möglich. Es ist aber möglich, die Valenzschwingungen der Gruppe O2BX näher zu untersuchen, was insbesondere dann von Interesse ist, wenn X eine Aminogruppe ist.

Wenn auch keine IR-Spektren von Diazaboracycloalkanen des Typs B bekannt sind, so sind doch Spektren von Diazaboracycloalkanen mit anderen Substituenten als ---OR schon mehrfach beschrieben worden⁹⁻¹¹,

⁵ J. A. Blau, W. Gerrard, M. F. Lappert, B. A. Mountfield und H. Pyszora⁹ J. Chem. Soc. **1960**, 380.

⁶ R. H. Cragg, M. F. Lappert und B. P. Tilley, J. Chem. Soc. 1964, 2108.

⁷ M. F. Lappert und H. Pyszora, J. Chem. Soc. (A) 1967, 854.

⁸ F. F. Caserio, J. J. Cavallo und R. I. Wagner, J. Org. Chem. 26, 2157 (1961).

⁹ J. Goubeau und A. Zappel, Z. anorg. allgem. Chem. 279, 38 (1955).

¹⁰ K. Niedenzu und P. Fritz, Z. anorg. allgem. Chem. 344, 329 (1966).

¹¹ J. W. Dawson, P. Fritz und K. Niedenzu, J. organometal. Chem. 5, 211 (1966).

und die Symmetrieverhältnisse solcher Verbindungen wurden von Goubeau und Zappel⁹ eingehend erörtert.

Soweit frühere Untersuchungen vorliegen, wurde jedoch weitgehend vom Prinzip unverkoppelter Gruppenfrequenzen Gebrauch gemacht, das in vielen Bor-Sauerstoff- und Bor-Stickstoffverbindungen nicht zutrifft. Wir haben daher eine Reihe von Verbindungen der Typen

dargestellt und ihre IR-Spektren besonders im Hinblick auf die hochfrequenten Ringvalenzschwingungen und ihre Abhängigkeit von B—X untersucht. Im Einzelnen handelt es sich dabei um folgende Derivate der oben bezeichneten Grundkörper:

I: $\mathbf{X} = \mathbf{Cl}$,	C_6H_5 , $N(CH_3)_2$, NHC_2H_5 , NHC_6	H_5 (Verb.	15)
II: $\mathbf{X} = \mathbf{Cl}$,	$N(CH_3)_2, N(CD_3)_2$	(Verb.	6—8)
III: $\mathbf{X} = \mathbf{Cl}$,	OCH_3, OCD_3	(Verb.	9

Die Spektren der untersuchten Verbindungen sind in den Tab. I bis IV wiedergegeben, wobei die Einteilung so getroffen ist, daß die Spektren der deuterierten und nicht-deuterierten Analogen einander gegenübergestellt sind. Dabei fällt auf, daß zum Teil weniger Banden auftreten als man auf Grund der Symmetriebetrachtungen erwarten sollte. Dies ist sicher teilweise auf zufällige Entartungen zurückzuführen⁹, andererseits auch darauf, daß manche Banden nur geringe Intensität aufweisen und von ihrer Zuordnung mangels Unterscheidbarkeit von Oberton- bzw. Kombinationsbanden in dieser Arbeit abgesehen werden muß.

Die in den Tabellen gegebenen Zuordnungen stützen sich auf den Vergleich der Spektren der in dieser Arbeit untersuchten Substanzen, auf frühere Untersuchungen an ähnlichen Systemen^{1-5, 9} und auf ein Manuskript über das Schwingungsspektrum von Äthylenglykol¹², für dessen freundliche Überlassung wir Herrn Dr. K. Niedenzu verbindlichst danken.

Bei den Verbindungen in Tab. I zeigen sich große Unterschiede der Spektren zwischen den Spektren von 1 und 6 einerseits und 2 andererseits, was zweifellos auf Kopplungen im System O₂B-Phenyl zurückzuführen ist. In 6 liegt die im Wesentlichen durch $v_{as}BO_2$ zu beschreibende Ringschwingung bei 1423 + 1460 cm⁻¹ und zeigt die erwartete deutliche Isotopenaufspaltung. In 1 fällt die höherfrequente ¹⁰BO₂-Bande mit

Zuordnung	1 (CH ₂ O) ₂ BCl	$\begin{array}{c} 2 \\ (\mathrm{CH}_2\mathrm{O})_2\mathrm{BC}_6\mathrm{H}_5 \end{array}$	6 (CD ₂ O) ₂ BCl	Zuordnung
v CH _{ar} .		$\begin{cases} 3080 \text{ w} \\ 3060 \text{ sh} \\ 3030 \text{ sh} \end{cases}$		
$\nu \mathrm{CH}_2$	$\left\{ \begin{array}{c} 2980 \text{ m} \\ 2955 \text{ m} \end{array} \right\}$	(2980 m	$\begin{array}{c} 2245 \text{ m} \\ 2180 \text{ vw} \\ 2140 \text{ w} \end{array}$	$\nu{\rm CD}_2$
	$2915 \mathrm{sh}$	2915 s [1970 w	2120 m J	
ocar		$\begin{cases} 1905 \text{ w} \\ 1835 \text{ w} \\ 1700 \text{ vw} \end{cases}$		
C=C _{ar}		1650 w ∫1606 s 1503 m		
$\delta\mathrm{CH}_2+\nu_{as}{}^{10}\mathrm{BO}_2$	1492 sh 1480 s	1484 m	1460 s	v_{as} ¹⁰ BO ₂
$\nu_{as}~^{11}\mathrm{BO}_2$	$1428 \mathrm{ss}$	1440 m	1423 ss	ν_{as} ¹¹ BO ₂
$\nu_{as} \ BO_2 \ verk.$	1405 w	1400 s 1376 ss 1342 ss		
$\nu \operatorname{BO}_2(\operatorname{Kl}.?)$	${1387 m} {1360 ss} {1313 m}$	ſ	1362 m 1346 m 1202 m	у ВО2 (Kl.?)
	1290 m (1252 s	(1240 sh	1264 ss)	
$v_s \operatorname{BO}_2$	1237 ss	$\begin{cases} 1210 \text{ sm} \\ 1219 \text{ ss} \end{cases}$	1246 s 1246 s 1215 m	$\nu_{\rm s}$ BO ₂ verk.
$\gamma \operatorname{CH}_2$	$\frac{1218 \text{ s}}{1114 \text{ w}}$		1120 w	
νCO	$1063 \mathrm{~s}$	1099 ss 1073 w 1032 s	$1098 \mathrm{m}$ $1086 \mathrm{m}$	v CO ar (2)
	$1028 { m \ sh}$	1002 5		a1
		1005 w 990 s		ar
			994 s 975 m	$\gamma ext{CD}_2$
\vee CC oder \circ CH ₂	980 vw 940 m	$945 \mathrm{~s}$	940 w	v CD ₂
• -	$905 \mathrm{w}$	805 w	915 w	τCD_2
		000 W	798 m	
	00×	707 m 703 ss		
	005 m	045 s		

Tabelle 1

es = extrem stark, ss = sehr stark, s = stark, m = mittel, w = schwach, vw = sehr schwach, ar = aromatisch, oc = Oberton bzw. Kombinationsbande.

Zuordnung	3 (CH ₂ O) ₂ BN(CH ₃) ₂	7 (CD ₂ O) ₂ BN(CH ₃) ₂	8 (CD ₂ O) ₂ BN(CD	_{s)2} Zuordnung
	2965 s	2990 w		
CIT	2920 m	2925 m		CII
νCH	$\left\{ 2895 \text{ ss} \right\}$	2875 m		νCH
	2840 W	2840 VW		
	(2800 s	2800 m j	9995 ml	
		2250 m 9900 ch	2225 m 2177 m	
$\nu ext{ CD}_2$		2200 sn	2177 m	" CD
		2145 W	2130 w	VUD
		2100 w j	2100 w	
., 10RN	1610 m	1500 m	2000 5 1	
V-DIN	1590 sh	1055 111		
	(1582 g	(1577 m)	1563 sh)	
ν ¹¹ BN, δ CH ₃	1551 ss	1550 s	1556 s	v ¹⁰ BN
	(1001 55	(1000 5	1522 sb	
			1514 ss	v ¹¹ BN
		1503 m	1487 sh	
	1480 w	1000 11	1201 0	
δan CH2	1456 s	1453 ss		δas CH3
oas onno	11000	2.00.00	$1445 \mathrm{sh}$	
δ CH3, ν ¹¹ BN	$1428 \mathrm{ss}$	1429 s		δCH_3 , v ¹¹ BN
	(1400 w)	$1405 \mathrm{w}$		
δCH_2 , $v_{as} BO_2$	1385 s	1370 m(b)		
	($1340 \mathrm{sh}$		
		1320 m	1340 s)	$\nu_{\rm as}$ ¹⁰ BO ₂
		1305 ss	1302 ss∫	$\nu_{ m as} \ ^{11} m BO_2$
	$1290 \mathrm{w}$,	,	
DO NOT	(1250 m)			
$\nu_{as} BO_2, o CH_2$	$1235 \mathrm{s}$	1229 w	$1202 \mathrm{~w}$	y BOa
$+ v_s DU_2$	(1210 ss)	$1214 \mathrm{\ ss}$	$1177 \mathrm{~s}$	$V_{\rm S}$ DO2
$v_{as} NC_2$	$1185 \mathrm{w}$	1150 w		
	1075 w	$1106 \mathrm{sh}$	$1100 \mathrm{sh}$	δCD_3
νCO	$1062 \mathrm{~s}$	1097 ss	1088 ss	$\nu CO + \nu_{as} NC_2$
		1076 w	1065 w	δCD_3
		1062 w	$1055 \mathrm{~w}$	
	1000	1050 m		
	1029 w	1029 w	009	CD
	059 -	990 m	982 m	γCD_2
MCI (9)	972 S	980 W	045 m	
$v_{\rm S} \equiv 0.02(1)$	999 S	940 s 910 w	920 w	τCD_{2}
		910 W	840 m	\circ CD ₂
	705 w/h	780 w	795 w	o
	780 W(D)	100 1	725 vw(b)	
	670 m	660 m	670 w	
	665 s	$645 \mathrm{m}$	640 m	

Tabelle 2

Zuordnung	4 (CH ₂ O) ₂ BNHC ₂ H ₅	5 (CH₂O)₂BNHC₅H₅	Zuordnung
v NH	$3455~{ m m}$	$3432~\mathrm{m}$	v NH
		$3365 \mathrm{w}$	
		3060 w)	() TT
		3030 m	$\nu \mathrm{CH}_{\mathrm{ar}}$
	12965 ss	2965 s ´	
U CH	2930 vw		νCH_{a1}
v Orial.	$\begin{array}{c} 2895 \text{ ss} \\ 2850 \text{ sh} \end{array}$	2902 ss	
		1928 w)	
		1844 w	ocar
		1700 w	
	$1680 \ w(b)$	/	
		1608 ss	$C = C_{ar}$
		1597 ss	
v ¹⁰ BN	$1560 \mathrm{~m}$	$1540 \mathrm{sh}$	^{10}BN
		$1530 \mathrm{~sh}$	
v ¹¹ BN	$1525 \mathrm{~ss}$	$1513 \mathrm{es}$	v ¹¹ BN
		1502 ss	$C = C_{ar}$
$S CH_2$	$1480 \mathrm{~s}$	1480 m	$\delta \operatorname{CH}_2$
$a_{\rm as}{ m CH}_3$	$1446 \mathrm{~m}$	$1450 \mathrm{~sh}$	
	$1420 \mathrm{~m}$	1440 ss	ar
$v \operatorname{BO}_2$ (Kl.?), $\gamma \operatorname{CH}_2$	1402 ss	1410 ss	ν BO ₂ (Kl.?), γ CH ₂
$S_{s} CH_{3}$	1370 w	1380 w	
. BO.	∫1340 sh	1362 sh)	PO
$v_{as} DO_2$	1319 ss	1341 ss ($v_{as} BO_2$
	$1280 \mathrm{w}$	$1297 \mathrm{w}^2$	$\vee NC_{ar}(?)$
		1298 vw	
BO	(1222 sh)	1210 m)	DO
$s DO_2$	$1203 s_s$	1191 ss	$v_{s} BO_{2}$
	1140 w	1155 w^2	
		1120 vw	
		1110 vw	
N—C	1070 s	1078 w	ar
~~~	$1060 \mathrm{sh}$		
e CO	1037  ss	1051  ss	νCO
		$1030 \mathrm{m}$	ar
		999 w	ar
$C = -C$ oder p $CH_2$	$940 \mathrm{\ s}$ $912 \mathrm{\ w}$	945 s	$\vee$ C—C oder $\rho$ CH ₂
		890 m	
		880 s	
	$CCl_4$	$CCl_4$	
	$680 { m sh}$		
	$670 \mathrm{m}$		
	$642 \mathrm{~s}$		

# Tabelle 3

Zuordnung	9 (CH ₂ NCH ₃ ) ₂ BCl	10 (CH ₂ NCH ₃ ) ₂ BOCH ₃	11 (CH ₂ NCH ₃ ) ₂ BOCD ₂	Zuordnung
<u> </u>	(2970 m	(2962 m	$2965 \mathrm{m}$	
CTT	$2895 \mathrm{s}$	$2880 \mathrm{sh}$	$2880 \mathrm{sh}$	OTT
v CH	$2855 \mathrm{ss}$	2840  ss	2840  ss(b)	V C.H.
	2788 s	$2780 \mathrm{m}$	2782 s	
	$2445 \mathrm{w}$	,	2220 m	
			$2135 \mathrm{w}$	$\nu  \mathrm{CD}_3$
			2070 s	
		(1550  sh)	$1548 \mathrm{sh}$	
	(1530  sh)	$1530 \mathrm{sh}$	$1515 \mathrm{sh}$	$v_{as}$ BN ₂ , (N)CH ₃
$v_{as}$ BN ₂ , $\delta$ (N)UH	3 1513 ss	1513  ss	1505  ss	
δ (O)CH ₃	C	1505  ss	,	
$\delta CH_2$	$1474 \mathrm{~m}$	$1486 \mathrm{m}$	$1480 \mathrm{~s}$	$\delta \operatorname{CH}_2$
$\delta_{as} CH_3$	$1448 \mathrm{ss}$	1444  ss	$1444 \mathrm{ss}$	$\delta_{as} \operatorname{CH}_3$
$\delta CH_3$ , $\nu_{as} BN_2$	$1412 \mathrm{\ ss}$	1405  ss	1407  ss	$\delta \operatorname{CH}_3, \nu_{\mathrm{as}} \operatorname{BN}_2$
no		(1350  sh)	$1360 \mathrm{sh}$	PO
A BO		1340  ss	$1349 \mathrm{ss}$	V BO
$v_{s} BN_{2}$	$1298 \mathrm{~ss}$	1296 ss	1299  ss	$v_{s} BN_{2}$
$\gamma  \mathrm{CH}_2$	1240  ss	$1260 \mathrm{m}$	1240 m(b)	$\gamma \operatorname{CH}_2$
ρ (N)—CH ₃	$1210 \mathrm{~s}$	$1215 \mathrm{~s}$	1215 s	ρ (N)—CH ₃
	1180  vw	1150 w		
			$1122 \mathrm{~s}$	$\delta \operatorname{CD}_3$
	1110 w			
			1099 m	
ν NC (ρ CH ₃ ?)	$1095 \mathrm{~s}$	$1065 \mathrm{~s}$	$1072 \mathrm{~m}$	ν NC (ρ CH ₃ ?)
	1070  vw		$1050 \mathrm{~s}$	$\delta  { m CD}_3$
νCO		$1007 \ s$		
	$987 \mathrm{w}$		$987 \mathrm{m}$	νCO
	967  vw			
v C-C (v Ring)	$945 \mathrm{w}$	$947 \mathrm{m}$	$942 \mathrm{m}$	$\nu$ C—C ( $\nu$ Ring)
			$925~{ m sh}$	
	$892 \mathrm{w}$		900 vw	
			850  vw	
		770  vw	770  vw	
		$730 \mathrm{w}$	$732~{ m w}$	
		695  vw	692  vw	
			$678 \mathrm{w}$	
		$650 \mathrm{~sh}$	$650 { m \ sh}$	
		630 s	$630 \mathrm{~s}$	

Tabelle 4

 $\delta$  CH₂ zusammen. Beim Vergleich mit dem Spektrum von Äthylenglykol¹² stellt man eine kräftige Frequenzzunahme für  $\delta$  CH₂ fest, eine Erscheinung, die für  $\delta$  (B—N)—CH₂— bzw.  $\delta$  (B—O)—CH₂— charakteristisch ist. Der Spektrenvergleich zeigt, daß die Banden bei 1360 + 1388 cm⁻¹ (in 1) bzw. 1341 + 1366 cm⁻¹ (in 6) sowie jene um 1250 cm⁻¹ und bei 1063 cm⁻¹ (in 1)

¹² W. Sawodny, K. Niedenzu und J. W. Dawson, Spectrochim Acta 23 A, 799 (1967).

und 1098 cm⁻¹ (in 6) ebenfalls Ringvalenzschwingungen zuzuordnen sind. In 2 treten entsprechende Absorptionen zwischen 1340 und 1400 cm⁻¹, bei 1219 + 1240 cm⁻¹ und bei 1099 cm⁻¹ auf,  $\nu_{as}BO_2$  liegt also — wie auch in anderen Dialkoxyphenylboranen¹³ — unter 1400 cm⁻¹.

Bei den in Tab. 2 zusammengefaßten Verbindungen ist das Spektrum von 8 ( $CD_2O$ )₂BN( $CD_3$ )₂ (Abb. 1) am einfachsten zu interpretieren, zumal über die Gruppierung B—N( $CD_3$ )₂ reichliches Vergleichsmaterial^{1, 3, 4}



Abb. 1. 2-Dimethylamino-1,3-dioxa-2-bora-cyclopentan (3, in CCl₄)

vorliegt. Beim Vergleich mit den nicht- bzw. teildeuterierten Verbindungen 3 (Abb. 2) bzw. 7 (Abb. 3) zeigen sich starke Kopplungen im ganzen NaCl-Bereich. Die Kopplung zwischen v BN und vasBO₂ führt zu einer sehr hochfrequenten Lage von v BN und einer sehr niederfrequenten von vas BO₂, wie das Spektrum von 8 klar zeigt. Auf eine solche Wechselwirkung in ähnlichen Verbindungen wurde schon von Lappert⁵ hingewiesen. Im Spektrum von 3 wird v BN durch Kopplung mit  $\delta$  CH₃ weiter erhöht und  $\delta_8$  CH₃ erniedrigt, während vasBO₂ mit einer CH₂-Deformationsschwingung koppelt wie der Vergleich der Spektren von 7 und 8 mit jenem von 3 zeigt. Dadurch kommt es auch im Bereich zwischen 1400 und 1200 cm⁻¹ zur Ausbildung von Banden mit gemischtem Schwingungscharakter und einer weiteren Erniedrigung von vasBO₂ in 3. Im Spektrum von 3 gibt es im Bereich von 1600—1200 cm⁻¹ außer  $\delta_{as}$ CH₃ keine einzige Bande, die als charakteristische Gruppenfrequenz zu bezeichnen ist. Die Aufhebung der Wechselwirkungen von v BN bzw. vasBO₂ führt im Spek-

¹³ J. E. Burch, W. Gerrard, M. Goldstein, E. F. Mooney und H. A. Willis, Spectrochim. Acta [London] 18, 1403 (1962).

Monatshefte für Chemie, Bd. 98/6

trum von 8 zu den klar in  ${}^{10}B$ - und  ${}^{11}B$ -Anteile aufgespaltenen Banden um 1500 und 1300 cm⁻¹, die ihrerseits ebenfalls gemischten Schwingungs-



Abb. 3. 2-Dimethylamino( $d_6$ )-1,3-dioxa-2-bora-cyclopentan( $d_4$ ) (8, in  $CCl_4/CS_2$ )

charakter haben, wobei der BN-Anteil bei der höherfrequenten Bande jedoch weit überwiegt. Die Verkleinerung oder Verwischung der Isotopenaufspaltung in BO- bzw. BN-Verbindungen deutet nach den hier vorliegenden Erfahrungen in jedem Fall auf Kopplung mit Banden, die selbst keine derartige Aufspaltung zeigen (z. B.  $\delta$  CH-Schwingungen), während bei Wechselwirkungen von Banden, die eine äquivalente Aufspaltung zeigen, diese Aufspaltung in den resultierenden Banden voll erhalten bleibt. Bei den niederer frequenten Banden ist ohne Vergleich mit Ramanspektren (Polarisationsmessung) eine sichere Zuordnung nicht in allen Fällen möglich, zumal auch hier Kopplungen innerhalb der einzelnen Schwingungsklassen auftreten. Die angegebenen Zuordnungen sind aber durch vielfachen Spektrenvergleich gestützt.

In den Verbindungen 4 und 5 (Tab. 3) liegt v BN über 1500 cm⁻¹ und  $\nu_{as}BO_2$  zwischen 1300 und 1350 cm⁻¹. Die antisymmetrische BO₂-Ringschwingung scheint dabei in starker Wechselwirkung mit  $\delta$  NH und  $\gamma$  CH₂ zu stehen, was das Auftreten der weiteren Banden um 1400 cm⁻¹ erklärt. Jedenfalls liegt  $\nu_{as}BO_2$  hier höherfrequent als in den Dimethylaminoverbindungen 3, 7 und 8 und in anderen analogen Dialkylaminoderivaten⁵.

Die Zuordnungen für die Diazaboracyclopentanderivate (Tab. 4) gehen ebenfalls aus einem umfangreichen Spektrenvergleich^{1, 2, 4, 9-11} hervor. Es sei jedoch darauf hingewiesen, daß in diesen Verbindungen die zwischen 1300 und 1000 cm⁻¹ auftretenden Kopplungen noch nicht überschaubar sind. Gruppenfrequenzordnungen beschreiben demnach in diesem Bereich höchstens überwiegenden Schwingungscharakter.

#### **Experimenteller** Teil

Alle Versuche wurden unter Ausschluß von Luftfeuchtigkeit und unter Verwendung absoluter Lösungsmittel durchgeführt.

2-Chlor-1,3-dioxa-2-bora-cyclopentan (1)

wurde nach den Angaben von Blau et al.¹⁴ hergestellt.

# 2-Phenyl-1,3-dioxa-2-bora-cyclopentan (2)

wurde aus 16 g  $C_6H_5BCl_2$  und 6 g Äthylenglykol in Benzol dargestellt. Nach 3stdg. Erhitzen unter Rückfluß und Abdestillieren des Benzols wurde der Rückstand bei 103—105°/11 T (Luftbadtemp.) destilliert. Ausb. 78%.

C₈H₉BO₂. Ber. C 64,93, H 6,13. Gef. C 64,95, H 6,48.

## 2-Dimethylamino-1,3-dioxa-2-bora-cyclopentan (3)

wurde entsprechend einer Vorschrift zur Darstellung ähnlicher Verbindungen¹⁵ aus 10,5 g 1 und 8 g (CH₃)₂NH in CH₂Cl₂ hergestellt. Sdp.₁₂ 43—44° (entspricht bekannten Daten¹⁷). Ausb. etwa 55%.

 $\begin{array}{rl} C_4H_{10}BNO_2. & {\rm Ber.}\ C\ 41,80,\ H\ 8,77,\ N\ 12,19.\\ & {\rm Gef.}\ C\ 40,42,\ H\ 8,85,\ N\ 12,74. \end{array}$ 

¹⁴ J. A. Blau, W. Gerrard und M. F. Lappert, J. Chem. Soc. 1957, 4116.

¹⁵ J. A. Blau, W. Gerrard und M. F. Lappert, J. Chem. Soc. 1960, 667.

¹⁶ H. Steinberg und R. J. Brotherton, Organoboron Chem., Vol. 2, Boron-

Nitrogen and Boron-Phosphorous Compounds, Wiley, N. Y. 1966, S. 140.

¹⁷ K. Niedenzu, H. Beyer und J. W. Dawson, Inorg. Chem. 1, 738 (1962).

2-Äthylamino-1,3-dioxa-2-bora-cyclopentan (4)

wurde wie **3** aus 13 g **1** und 10,5 g  $C_2H_5NH_2$  bereitet. Sdp.₁₂ 75° (Luftbadtemp.) Schmp. 90—92° (erstarrt erst nach langem Stehen). Ausb. etwa 45%.

 $\begin{array}{ccc} {\rm C_{4}H_{10}BNO_{2}}. & {\rm Ber.} \ {\rm C} \ 41,80, \ H \ 8,77, \ N \ 12,19. \\ & {\rm Gef.} \ {\rm C} \ 39,75, \ H \ 8,78, \ N \ 12,03. \end{array}$ 

2-Anilino-1,3-dioxa-2-bora-cyclopentan (5)

wurde analog aus 10 g 1 und 18 g Anilin in  $CH_2Cl_2$  erhalten. Sdp._{0,005} 93° (Luftbadtemp.) Schmp. 110—112° (erstarrt erst nach langem Stehen). Ausb. etwa 55%.

2-Chlor-1,3-dioxa-2-bora-cyclopentan $(d_4)$  (6)

wurde analog zu 1 hergestellt. Sdp.12 46°. Ausb. etwa 75%.

C₂D₄BClO₂. Ber. C 21,77, H* 4,06. Gef. C 20,20, H 3,78.

2-Dimethylamino-1,3-dioxa-2-bora-cyclopentan( $d_4$ ) (7)

wurde analog zu 3 aus 3,75 g 6 und 2,5 g (CH₃)₂NH dargestellt. Sdp.₁₀  $43-45^{\circ}$ . Ausb. etwa 60%.

2. Dimethylamino  $(d_6)$  - 1, 3-dioxa - 2-bora-cyclopentan  $(d_4)$  (8)

Aus  $(CD_3)_2NH_2Cl$  (Merck, Darmstadt) wurde  $(CD_3)_2NH$  mit KOH freigesetzt, über metall. Na getrocknet und bei — 78° in  $CH_2Cl_2$  einkondensiert. Zur Lösung wurde die 0,4molare Menge 6 in  $CH_2Cl_2$  zugegeben und 2 Stdn. am Rückfluß gekocht. Nach Filtration vom ausgefallenen  $(CD_3)_2NH_2Cl$  wurde das Lösungsmittel abdestilliert und der Rückstand bei 43—45°/10 Torr destilliert. Ausb. etwa 85%.

#### 1,3-Dimethyl-2-chloro-1,3-diaza-2-boracyclopentan (9)

wurde aus äquimolaren Mengen BCl₃ und sym. N-Dimethyläthylendiamin in CH₂Cl₂ unter Zusatz von überschüss. Triäthylamin als HCl-Acceptor hergestellt. Bei Fehlen eines Acceptors kann Anlagerung von HCl an die B—N-Bindung und in der Folge Ringspaltung eintreten, wie es bei ähnlichen Reaktionen beobachtet wurde^{9, 17}. Sdp.₁₂ 43—45°. Ausb. 80%.

* D wurde entsprechend dem aus der Mikroverbrennungsanalyse zu erwartendem H-Wert umgerechnet.

H. 6/1967]

1,3-Dimethyl-2-methoxy-1,3-diaza-2-bora-cyclopentan (10)

wurde aus 5 g CH₃ONa und 11 g 9 in Benzol dargestellt. Sdp.₁₂ 49--51°. Ausb. etwa  $50^{\circ}_{0}$ .

 $C_5H_{13}BN_2O. \quad Ber. \ C \ 46,69, \ H \ 10,23, \ N \ 21,88. \\ Gef. \ C \ 50,68, \ H \ 10,47, \ N \ 22,67.$ 

1,3-Dimethyl-2-methoxy( $d_3$ )-1,3-diaza-2-bora-cyclopentan (11)

wurde entsprechend aus  $3.35~{\rm g}$  CD₃ONa und  $7.3~{\rm g}$  9 erhalten. Sdp.₁₀ 44°. Ausb. etwa50%.

Die IR-Spektren wurden als Flüssigkeits- bzw. Lösungsspektren auf einem Perkin-Elmer 237 Gitterspektrographen registriert.

Der Owens-Illinois Inc., Toledo/Ohio (USA), danken wir für die großzügige Unterstützung unserer Arbeit, Herrn Prof. Dr. V. Gutmann für die stete Förderung.

 $\ast$  D wurde entsprechend dem aus der Mikroverbrennungsanalyse zu erwartenden H-Wert umgerechnet.